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Abstract
Multimodal recommender systems enhance recommendation per-
formance by integrating information from different modalities (e.g.,
text and images). A common approach is to link items with high
modality similarity in modality graphs, helping users explore their
interests more broadly. However, existing methods often introduce
noise when enhancing modality graphs, making it challenging
to effectively balance performance and accuracy. To address this
issue, we propose an Interest Tree Augmented Modality Graph
RecommendER for Multimodal Recommendation (TAMER). In
this framework, we first redistribute item modality features us-
ing various component analysis methods to ensure more reliable
item similarity within modality graphs. Next, we construct interest
graphs based on reliable semantic relationships and prune the inter-
est graphs into multiple interest trees. These interest trees are then
applied to the multimodal item-item homogeneous graph to extend
potential links within the modality homogeneous graph. The inter-
est tree-based enhancement method effectively captures high-order
relationships in the modality graph while avoiding noisy links. The
effectiveness of the proposed method is demonstrated through com-
prehensive experiments on three real-world datasets. Compared
with the strongest baseline methods, our method achieves an av-
erage improvement of 9.98% across four evaluation metrics. The
source code is available at https://github.com/Z-last-ONE/TAMER.
∗This work was completed while he was at Beijing University of Posts and
Telecommunications.
†Corresponding author.
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1 Introduction
Recommender systems are crucial tools for helping users discover
content of interest from massive data [10, 32]. In recent years, in-
creasing attention has been paid to the role of multimedia informa-
tion (e.g., text, images) in recommendations, making multimodal
recommender systems a topic of widespread interest [27, 34, 36, 43].
By modeling multimedia content, multimodal recommender sys-
tems capture user interests from multiple perspectives, offering
greater potential to accurately learn user preferences [7, 13].

Early approaches, such as VBPR [5], integrated modality signals
with item IDs to provide a multifaceted description of item features,
thereby improving item representation. With the development of
graph neural networks (GNNs) [14, 20, 30], multimodal recommen-
dation methods based on graph convolutional networks (GCNs)
have demonstrated promising performance. To better capture the
internal relationships between items, LATTICE [37] constructs a
learnable adjacency matrix based on modality similarity to iden-
tify potential item relationships. However, FREEDOM [44] argues
that learnable homogeneous graph structures are inefficient and
instead proposes freezing item modality graphs, achieving superior
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(b) Effect of Different 𝑘 in Modality Graph.

Figure 1: Figure (a) illustrates the two stages of current MRS:
heterogeneous graph propagation and homogeneous graph
propagation. Figure (b) depicts the potential impact of differ-
ent 𝑘 on propagation within a homogeneous modality graph.

performance. This approach has become a paradigm for multi-
modal recommendation research in recent years, where learning is
performed separately on a heterogeneous interaction graph and a
homogeneous frozen modality graph, followed by feature fusion. As
shown in Figure 1a, the model first learns user preferences through
user-item interactions, then uses item modality similarity for top-𝑘
pruning to construct the modality graph, propagating item features
through the modality graph. However, the representational capa-
bility of the frozen modality graph pruned via top-𝑘 completely
depends on the original distribution of modality features and the
choice of 𝑘 . As illustrated in Figure 1b, the black box represents
the distribution of item features, and a smaller 𝑘 value in the red
box limits the propagation of item features to only a few of the
most similar items, increasing the risk of users being trapped in an
information bubble. Conversely, a larger 𝑘 value in the yellow box
may lead to peripheral items being connected to irrelevant items
from adjacent clusters, introducing noisy connections [33], even if
there is no real association between these items. For different items
within the same set, it is challenging to determine an optimal 𝑘
value that ensures as many relevant connections as possible while
avoiding the introduction of noise.

To address this issue, some studies have proposed optimization
methods for item modality graphs. For example, DA-MRS [33] re-
duces noisy connections in the original visual and textual modality
graphs by leveraging behavior graph. SOIL [19] constructs an in-
terest graph by aggregating item-wise modality-specific similarity
connections, and shares these connections across modalities to en-
hance structural consistency. However, the above methods still have

certain limitations. DA-MRS only models low-order semantic rela-
tionships. Although it performs well in noise reduction, it lacks the
capability to directly perceive high-order semantic information and
is therefore limited in expanding the diversity of item connections.
While SOIL effectively perceives more potential item connections,
its approach of sharing connections between textual and visual
modalities may introduce the issue described in DA-MRS, where
highly related items in the visual modality are connected with com-
pletely unrelated items in the textual modality (e.g., a carpet with a
Pikachu print and a painting). This could inadvertently introduce
new noise into the modality graph.

Therefore, we propose a novel InterestTreeAugmentedModality
Graph RecommendER for Multimodal Recommendation (TAMER).
Specifically, to capture high-order item interests while avoiding
the introduction of additional noise, we introduce Interest Trees
to enhance modality representation. In our approach, we define
the set of items interacted with by a user as an interest set. By
computing the relationships among all interest sets, we construct
an interest graph. Based on this graph, we prune it into multiple
Interest Trees using a breadth-first search (BFS) strategy. Each node
in an Interest Tree is assigned a weight representing its confidence
score relative to the root node. By incorporating these confidence
scores as coefficients into the modality similarity matrix, we further
enhance modality relationships. However, this method is partially
dependent on the original distribution of modality features. Whiten-
Rec [39] pointed out that pre-trained text embeddings exhibit an
average cosine similarity as high as 0.8, which not only weakens the
model’s ability to differentiate features within the embedding space
but also increases the risk of gradient explosion, compromising the
stability and effectiveness of the recommendationmodel. To address
this issue, we integrate various component analysis methods into
multimodal recommendation. Specifically, we employ Independent
Component Analysis (ICA) [8] and other analysis techniques to
optimize the distribution of items in the modality feature space,
eliminating redundant features and noise, ensuring a more uniform
distribution of items while preserving key information as much as
possible. This approach enhances the discriminative power of item
features, ensuring more reliable multimodal representations.

In summary, our contributions are as follows:

• We propose a Multi-component Analysis Collaborative Pro-
cessing (MACP) method that integrates multiple component
analysis techniques to optimize modality feature distribution,
enhancing item similarity discriminability within the homo-
geneous graph and mitigating the risk of gradient explosion
during Interest Tree enhancement.
• We construct multiple Interest Trees based on user inter-
est information and then utilize a multi-stage homogeneous
graph enhancement method to provide high-order infor-
mation for the modality homogeneous graph, improving its
expressiveness while effectively avoiding noise introduction.
• We conduct extensive experiments on three real-world datasets,
comparing our method against 20 baseline models. The re-
sults demonstrate that our approach achieves an average
performance improvement of 9.98% over the best baseline
model.
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Figure 2: Overall framework of TAMER: (a) The overall workflow of the proposed method: TAMER first encodes multimodal
features and then jointly learns on both homogeneous and heterogeneous graphs. (b) The process of constructing the Interest
Tree. (c) The enhancement of the modality graph based on the Interest Tree.

2 Related work
2.1 Multimodal Recommendation Methods
The initial multimodal recommendation approaches directly ap-
plied visual signals to recommender systems. For example, VBPR
[5] enriches item representation by extracting visual feature ma-
trices through convolutional neural networks and concatenating
these features directly with item IDs. With the rise of GNNs, some
studies began leveraging GCNs to capture user preferences. For
instance, MMGCN [29] constructs multiple modality-specific bi-
partite graphs to learn user preferences from different modalities
and fuses these results for recommendations, achieving significant
effects. GRCN [28] optimizes user-item interaction graphs using
modality information, mitigating the negative impact of false posi-
tive edges in implicit feedback on recommendation performance.
SLMRec [21] integrates self-supervised learning into GNN recom-
mendation models, designing three training tasks from modality-
agnostic and modality-specific perspectives to generate powerful
representations. BM3 [45] uses contrastive learning to align item ID
embeddings with latent representations of item modality features,
resulting in more efficient recommendations. MGCN [35] purifies
each modality’s information using item IDs and constructs a gating
unit for each modality to perceive user behaviors and integrate
with modality information. AlignRec [12] proposes a multi-task
alignment scheme that aligns multimodal feature representations
through content alignment, content-category alignment, and user-
item alignment, thereby bridging the semantic gap between multi-
modal content and item ID representations. SMORE [16] utilizes
the spectral space for feature fusion, employing an adaptive filter
to suppress noise while integrating a graph learning module to
capture semantic relationships between items. MENTOR [31] en-
hances model robustness through a cross-modal alignment task
and a feature augmentation strategy, ensuring better consistency

and adaptability across different modalities. By integrating multi-
modal information into the recommendation system, significant
performance improvements have been achieved.

2.2 Homogeneous Graph-Based
Recommendation with Enhancement or
Denoising

DualGNN [25] constructs a user-item bipartite graph and estab-
lishes a GCN for each modality to learn user preferences. Then,
DualGNN builds a user co-occurrence homogeneous graph, propa-
gating user preferences through the homogeneous graph to enhance
the expressiveness of user features. LATTICE [37] and MICRO [38]
propose a modality-aware structural learning network to dynami-
cally discover item relationships within modalities and construct
item homogeneous graphs based on these relationships. FREEDOM
[44] suggests that using frozen item homogeneous graphs could pro-
vide better performance, using these frozen graphs to denoise the
user-item bipartite graph, thereby significantly improving model
performance. Building on DualGNN, DRAGON [40] proposes an
attention concatenation mechanism that effectively integrates user
preferences with item features and constructs similarity-based ho-
mogeneous graphs for each modality to learn dual representations
of users and items. LGMRec [4] captures modality-related and col-
laborative user interests through a local graph embedding module,
and models hyperedges in each modality’s homogeneous graph
using a global hypergraph embedding module, further exploring
modality-specific item dependencies. SOIL [19] addresses the limi-
tations of the “best deal matching principl” in certain scenarios by
developing a secondary interest learning framework that utilizes
the complementary relationships between different modalities to
extend user interest connections in the user-item bipartite graph.
GUME [11] introduces a user-item bipartite graph enhancement
strategy based on modality similarity, using homogeneous graphs
to improve the connectivity of long-tail items, effectively mitigating
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the long-tail issue and achieving excellent recommendation results.
DA-MRS [33] suppresses noise by constructing a cross-modality
consistent item graph and enhances representations through a dual
alignment strategy, which incorporates both user preferences and
hierarchical relationships. These methods effectively improve rec-
ommendation performance.

3 Method
In a typical multimodal recommendation system, the user set and
item set are represented byU = {𝑢1, 𝑢2, ..., 𝑢𝑛} andI = {𝑖1, 𝑖2, ..., 𝑖𝑘 },
respectively. The modality information𝑚 ∈ M = {𝑣, 𝑡} represents
different modalities, where 𝑣 and 𝑡 denote visual and textual modal-
ities, respectively. The historical interactions between users and
items can be represented by an interactionmatrix𝑅 ∈ {0, 1} |U |× |I | ,
wherematrix element 𝑟𝑢,𝑖 ∈ {0, 1} indicates the interaction between
user 𝑢 and item 𝑖: 1 indicates an interaction exists, and 0 indicates
no interaction. Based on these interactions, we construct a bipartite
graph G = {𝑉 , 𝐸}, where 𝑉 = {U ∪ I} and 𝐸 = {(𝑢, 𝑖) | 𝑟𝑢,𝑖 = 1}.
For each user and item under modality𝑚, we randomly initialize
embedding vectors E𝑚

𝑖𝑑
∈ R𝑑 and E𝑚𝑢 ∈ R𝑑 , where 𝑑 is the em-

bedding dimension, representing item ID and user embeddings,
respectively. In addition, the original modality feature of an item is
represented as E𝑚_𝑓 𝑒𝑎𝑡

𝑟𝑎𝑤 ∈ R𝑑𝑚 , where 𝑑𝑚 is the feature dimension
of modality𝑚.

3.1 MACP
The overall framework is shown in Figure 2. First, we preprocess
the distribution of multimodal data to prevent gradient explosion
during Interest Tree enhancement. Currently, ZCA-basedwhitening
methods for redistributing item features have demonstrated strong
performance [39]. To further enhance the distinctiveness of nodes
in the item-item graph and enable the Interest Tree to strengthen
homogeneous relationships from different perspectives andweights,
we employ the PCA [9], ICA [8] and ZCA [1] methods. Specifically,
we process modality vectors to obtain E𝑚_𝑓 𝑒𝑎𝑡 , where𝑚 ∈ {𝑣, 𝑝, 𝑧}:

E𝑝_𝑓 𝑒𝑎𝑡 = ICA(PCA(E𝑡_𝑓 𝑒𝑎𝑡𝑟𝑎𝑤 )),

E𝑧_𝑓 𝑒𝑎𝑡 = ZCA(E𝑡_𝑓 𝑒𝑎𝑡𝑟𝑎𝑤 ),

E𝑣_𝑓 𝑒𝑎𝑡 = E𝑣_𝑓 𝑒𝑎𝑡𝑟𝑎𝑤 .

(1)

3.2 Interest Tree Enhanced Homogeneous
Graph

3.2.1 Modality Graph Construction. First, we initialize a similarity
matrix 𝑆𝑚 , where each element 𝑆𝑚

𝑖 𝑗
represents the similarity be-

tween item 𝑖 and item 𝑗 in modality𝑚 ∈ M′ = {𝑣, 𝑝, 𝑧}. We use
cosine similarity to calculate 𝑆𝑚

𝑖 𝑗
[44], as follows:

𝑆𝑚𝑖 𝑗 =
(𝑒𝑚_𝑓 𝑒𝑎𝑡
𝑖

)⊤ (𝑒𝑚_𝑓 𝑒𝑎𝑡
𝑗

)

| | (𝑒𝑚_𝑓 𝑒𝑎𝑡
𝑖

) | | | | (𝑒𝑚_𝑓 𝑒𝑎𝑡
𝑗

) | |
, (2)

where 𝑒𝑚_𝑓 𝑒𝑎𝑡
𝑖

and 𝑒𝑚_𝑓 𝑒𝑎𝑡
𝑗

represent the modality feature repre-
sentations of item 𝑖 and item 𝑗 , respectively, in E𝑚_𝑓 𝑒𝑎𝑡 . We employ

a 𝑘-nearest neighbors method to construct a modality-specific ad-
jacency matrix A𝑚 and a similarity matrix ¤𝑆𝑚 :

A𝑚
𝑖 𝑗 =

{
1, if 𝑆𝑚

𝑖 𝑗
∈ top-𝑘 (𝑆𝑚

𝑖
),

0, otherwise.
(3)

¤𝑆𝑚𝑖 𝑗 =
{
𝑆𝑚
𝑖 𝑗
, if 𝑆𝑚

𝑖 𝑗
∈ top-𝑘 (𝑆𝑚

𝑖
),

0, otherwise.
(4)

where A𝑚
𝑖,𝑗

= 1 indicates the presence of a connection between
items 𝑖 and 𝑗 in the adjacency matrix A𝑚 , and ¤𝑆𝑚

𝑖 𝑗
retains the

similarity value between items 𝑖 and 𝑗 . To ensure the robustness of
graph convolution learning, we typically normalize the adjacency
matrix A𝑚 to obtain a normalized matrix Â𝑚 as follows:

Â𝑚 = 𝐷−
1
2A𝑚𝐷−

1
2 . (5)

3.2.2 Interest Graph Construction. First, we initialize an item-item
co-occurrence matrix 𝑆𝑐 , where each element 𝑆

𝑖 𝑗
represents the

number of times item 𝑖 and item 𝑗 appear in the same interest
set. To sparsify this matrix while retaining valuable information,
we prune the matrix 𝑆𝑐

𝑖 𝑗
using a top-𝑘 method to remove weakly

related relationships, thereby avoiding noise introduced by random
behaviors. Specifically, for each item 𝑖 , we select the top-𝑘 items
with the highest co-occurrence counts to generate the top-𝑘 list 𝑆𝑐

𝑖
.

In the pruned interest matrix ¤𝑆𝑐 , each element ¤𝑆𝑐
𝑖 𝑗
is represented

as:

¤𝑆𝑐𝑖 𝑗 =
{
𝑆𝑐
𝑖 𝑗
, if 𝑆𝑐

𝑖 𝑗
∈ top-𝑘 (𝑆𝑐

𝑖
),

0, otherwise.
(6)

3.2.3 Interest Tree Construction. The construction of the Interest
Tree is described in Algorithm 1. Unlike other methods, we focus
only on the high-order relationships and weights between items
[26]. Its inputs include a weighted graph 𝐺 , which in this paper
corresponds to ¤𝑆𝑐

𝑖 𝑗
, a starting node 𝑖 , and a maximum order 𝑛, where

𝑛 is set to 3 in this paper. The algorithm is based on a BFS strategy. It
iteratively explores nodes layer by layer, storing nodes at each order
𝑜 . The exploration process involves pruning based on a combination
of the weight list and the top-𝑘 list, ensuring that only the most
relevant nodes with optimal weights are retained as related nodes
for node 𝑖 . After computing up to 𝑛-th order relationships, the
algorithm returns 𝑑𝑇𝑖 , a weighted tree 𝑇𝑖 = {𝑁,𝑤, 𝑜} in dictionary
form, where: 𝑁 represents the indices of nodes related to 𝑖 , 𝑤
denotes the corresponding weights, 𝑜 indicates the order of each
relationship.

3.2.4 Multi-Stage Homogeneous Graph Augmentation. Previous
works typically relied on modality-specific adjacency matrices Â𝑚

for feature propagation in homogeneous item graphs. However,
these approaches fail to capture semantic information effectively.
Therefore, we first perform multi-stage homogeneous graph en-
hancement. Specifically, as shown in Figure 2(c), in the stage 1, for
each item 𝑖 , we generate a interest tree 𝑇𝑖 = {𝑁,𝑤, 𝑜} to enhance
modality relationships. For each item 𝑗 ∈ 𝑁 , the weight coefficient
is defined as:

𝑤
𝑐𝑜𝑒 𝑓

𝑖 𝑗
= 𝛾𝑒 (1−𝑜𝑖 𝑗 )𝑤𝜏

𝑖 𝑗 . (7)

Here, 𝛾 and 𝜏 are hyperparameters, 𝑒 is Euler’s number. As a result,
we obtain the confidence matrix 𝑤𝑐𝑜𝑒 𝑓 = [𝑤𝑐𝑜𝑒 𝑓

𝑖 𝑗
] ∈ R | I |× |I |≥0 . In
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Algorithm 1: Find Weighted 𝑛-order Relationships
Input: Weighted graph𝐺 , starting node 𝑖 , maximum order 𝑛
Output: Dictionary 𝑑𝑇𝑖 storing nodes and weights for each

order
1 𝑜𝑟𝑑𝑒𝑟_𝑑𝑖𝑐𝑡 ← ∅, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← {𝑖},

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙_𝑛𝑜𝑑𝑒𝑠 ← [(𝑖, 0)];
2 for 𝑜𝑟𝑑𝑒𝑟 ← 1 to 𝑛 do
3 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑛𝑜𝑑𝑒𝑠 ← ∅;
4 foreach (𝑛𝑜𝑑𝑒, _) ∈ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙_𝑛𝑜𝑑𝑒𝑠 do
5 foreach (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟,𝑤𝑒𝑖𝑔ℎ𝑡) ∈ 𝐺 [𝑛𝑜𝑑𝑒] do
6 if 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∉ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
7 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 }; Append

(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟,𝑤𝑒𝑖𝑔ℎ𝑡) to 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑛𝑜𝑑𝑒𝑠;

8 if 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑛𝑜𝑑𝑒𝑠 ≠ ∅ then
9 if 𝑜𝑟𝑑𝑒𝑟 > 1 then
10 Sort 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑛𝑜𝑑𝑒𝑠 by weight (desc); Keep

top ⌊ |𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙_𝑛𝑜𝑑𝑒𝑠 |(𝑜𝑟𝑑𝑒𝑟−1)×2 ⌋ elements;

11 𝑜𝑟𝑑𝑒𝑟_𝑑𝑖𝑐𝑡 [𝑜𝑟𝑑𝑒𝑟 ] ← 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑛𝑜𝑑𝑒𝑠;
12 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙_𝑛𝑜𝑑𝑒𝑠 ← 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑛𝑜𝑑𝑒𝑠;
13 return 𝑜𝑟𝑑𝑒𝑟_𝑑𝑖𝑐𝑡 ;

the stage 2, we then multiply the confidence-weighted coefficient
with the similarity matrix of each modality:

𝑆𝑚
𝑐𝑜𝑒𝑓

= 𝑤𝑐𝑜𝑒 𝑓 ⊙ 𝑆𝑚 +
¤𝑆𝑚
2
, (8)

where ⊙ denotes element-wise multiplication.
Subsequently, we normalize 𝑆𝑚

𝑐𝑜𝑒𝑓
to obtain 𝑆𝑚

𝑐𝑜𝑒𝑓
. Finally, in

the stage 3, we fuse 𝑆𝑚
𝑐𝑜𝑒𝑓

with Â𝑚 to generate the interest tree-
enhanced adjacency matrix:

𝑆𝑚 = 𝑆𝑚
𝑐𝑜𝑒𝑓
+ Â

𝑚

2
. (9)

To further capture semantic relationships, we explicitly model the
interest graph ¤𝑆𝑐 . Specifically, we reset each element in ¤𝑆𝑐

𝑖 𝑗
to obtain

A𝑐
𝑖 𝑗

= {1 | ¤𝑆𝑐
𝑖 𝑗

> 0}. We then compute its normalized representa-

tion: S̃𝑐 = 𝐷−
1
2A𝑐𝐷−

1
2 .

To unify these homogeneous graphs, we introduce a set of hy-
perparameters 𝛼𝑚 to balance the contributions of each graph in
the homogeneous graph. The final adjacency matrix of the multi-
modal homogeneous graph is computed as: 𝑆 =

∑
ℎ𝑔∈M′′ 𝛼ℎ𝑔 × 𝑆ℎ𝑔 ,

whereM′′ =M′ ∪ {𝑐}.

3.3 Dual Graph Learning
Similar to existing methods, we perform dual representation learn-
ing on both homogeneous and heterogeneous graphs [40].

3.3.1 Heterogeneous Graph Learning. First, we embed the original
modality features using modality-specific embedding functions to
obtain embeddings for different modalities, as represented by the
following equation:

Ê𝑚_𝑓 𝑒𝑎𝑡 =𝑊𝑚
2

(
𝑙𝑒𝑎𝑘𝑦_𝑟𝑒𝑙𝑢 (𝑊𝑚

1 E
𝑚_𝑓 𝑒𝑎𝑡 + 𝑏1)

)
+ 𝑏2, (10)

where𝑊𝑚
1 ∈ R

4𝑑×𝑑𝑚 and𝑊𝑚
2 ∈ R

𝑑×4𝑑 are linear transformation
matrices, and 𝑏1 ∈ R4𝑑 and 𝑏2 ∈ R𝑑 are bias terms.

Next, we purify the modality features using item IDs to obtain
the embedded modality features:

E𝑚𝑖 = E𝑚
𝑖𝑑
⊙ Ê𝑚_𝑓 𝑒𝑎𝑡 , (11)

where ⊙ denotes element-wise multiplication. We then use a bipar-
tite graph G𝑚 to learn representations in each modality𝑚, preserv-
ing the graph structure G = {𝑉 , 𝐸} in each modality. Due to the
computational efficiency of LightGCN [6], we apply it to heteroge-
neous graph learning, as represented by the following equations:

E𝑚𝑢 (𝑙+1) =
∑︁
𝑖∈𝑉𝑢

1√︁
|𝑉𝑢 |

√︁
|𝑉𝑖 |
E𝑚𝑖
(𝑙 )
,

E𝑚𝑖
(𝑙+1)

=
∑︁
𝑢∈𝑉𝑖

1√︁
|𝑉𝑢 |

√︁
|𝑉𝑖 |
E𝑚𝑢 (𝑙 ) .

(12)

where 𝑉𝑢 = {𝑖 ∈ I | 𝑟𝑢,𝑖 = 1} and 𝑉𝑖 = {𝑢 ∈ U | 𝑟𝑢,𝑖 = 1}
represent the first-order neighbors of user 𝑢 and item 𝑖 in graph G,
respectively, and 𝑙 denotes the propagation layer.

After 𝐿 layers of propagation and aggregation, we fuse the repre-
sentations from each layer using element-wise summation to obtain
the final user representation 𝑢𝑚𝑟𝑒𝑝 =

∑𝐿
𝑙=0 E

𝑚
𝑢
(𝑙 ) and item repre-

sentation 𝑖𝑚𝑟𝑒𝑝 =
∑𝐿
𝑙=0 E

𝑚
𝑖
(𝑙 ) for heterogeneous graph learning. We

concatenate the modality-specific representations to generate the
final representations for users and items in heterogeneous graph
learning [40]:

𝑢𝑟𝑒𝑝 = [𝑊 𝑝 × 𝑢𝑝𝑟𝑒𝑝 |𝑊 𝑧 × 𝑢𝑧𝑟𝑒𝑝 |𝑊 𝑣 × 𝑢𝑣𝑟𝑒𝑝 ],

𝑖𝑟𝑒𝑝 = [ 𝑖𝑝𝑟𝑒𝑝 | 𝑖𝑧𝑟𝑒𝑝 | 𝑖𝑣𝑟𝑒𝑝 ] .
(13)

where [ | ] denotes concatenation, and𝑊𝑚,𝑚 ∈ M′, are learnable
parameters used to weight different modalities.

3.3.2 Homogeneous Graph Learning. We employ graph convolu-
tion operations to capture relationships between items [44]:

𝑖
ℎ𝑔
𝑟𝑒𝑝 =

∑︁
𝑗∈N𝑖

𝑆𝑖 𝑗 × 𝑖𝑟𝑒𝑝 . (14)

where N𝑖 =
{
𝑗 | 𝑆𝑖 𝑗 ≠ 0

}
represents the set of neighboring items 𝑗

for item 𝑖 in the matrix 𝑆ℎ𝑔 .

3.3.3 Fusion and Prediction. We obtain the final user representa-
tion 𝑒𝑢 and item representation 𝑒𝑖 :

𝑒𝑢 = 𝑢𝑟𝑒𝑝 , 𝑒𝑖 = 𝑖𝑟𝑒𝑝 + 𝑖ℎ𝑔𝑟𝑒𝑝 . (15)

We compute the user’s preference score for item 𝑖 by using the
inner product between the user representation 𝑒𝑢 and the item
representation 𝑒𝑖 . To optimize the model parameters, we adopt
Bayesian Personalized Ranking (BPR) [18] loss, which is formulated
as:

L =
∑︁

𝑢,𝑖+,𝑖−∈𝐷
(− ln𝜎 (𝑧𝑢,𝑖+ − 𝑧𝑢,𝑖− )) + 𝛽 ∥Θ∥22 , (16)

where 𝑧𝑢,𝑖 = 𝑒𝑢 · 𝑒⊤𝑖 , each triplet (𝑢, 𝑖+, 𝑖−) satisfies (𝑢, 𝑖+) ∈ 𝐸,
(𝑢, 𝑖−) ∉ 𝐸. 𝛽 denotes the L2 regularization coefficient, and Θ rep-
resents the model parameters.
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Table 1: Comparison of performance with general and multimodal recommendation systems. The best performance is high-
lighted in bold, while the second-best performance is indicated with an underline. “improv.” represents the improvement of
TAMER over the best baseline for each metric on each dataset. “-”indicates the model cannot be fitted into a NVIDIA 4090.

Dataset Baby Sports Electronics

Metrics R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

BPR(UAI’09) 0.0357 0.0575 0.0192 0.0249 0.0432 0.0653 0.0241 0.0298 0.0235 0.0367 0.0127 0.0161
LightGCN(SIGIR’20) 0.0479 0.0754 0.0257 0.0328 0.0569 0.0864 0.0313 0.0387 0.0363 0.0540 0.0204 0.0250
LayerGCN(ICDE’23) 0.0529 0.0820 0.0281 0.0355 0.0594 0.0916 0.0323 0.0406 0.0391 0.0581 0.0220 0.0269

VBPR(AAAI’16) 0.0423 0.0663 0.0223 0.0284 0.0558 0.0856 0.0307 0.0384 0.0293 0.0458 0.0159 0.0202
MMGCN(MM’19) 0.0378 0.0615 0.0200 0.0261 0.0370 0.0605 0.0193 0.0254 0.0207 0.0331 0.0109 0.0141
DualGNN(TMM’21) 0.0448 0.0716 0.0240 0.0309 0.0568 0.0859 0.0310 0.0385 0.0363 0.0541 0.0202 0.0248
GRCN(MM’20) 0.0532 0.0824 0.0282 0.0358 0.0559 0.0877 0.0306 0.0389 0.0349 0.0529 0.0195 0.0241
LATTICE(MM’21) 0.0547 0.0850 0.0292 0.0370 0.0620 0.0953 0.0335 0.0421 – – – –
SLMRec(TMM’22) 0.0540 0.0810 0.0285 0.0357 0.0676 0.1017 0.0374 0.0462 0.0422 0.0630 0.0237 0.0291
BM3(WWW’23) 0.0564 0.0883 0.0301 0.0383 0.0656 0.0980 0.0355 0.0438 0.0437 0.0648 0.0247 0.0302
MICRO(TKDE’22) 0.0584 0.0929 0.0318 0.0407 0.0679 0.1050 0.0367 0.0463 – – – –
FREEDOM(MM’23) 0.0624 0.0985 0.0324 0.0416 0.0710 0.1077 0.0382 0.0476 0.0396 0.0601 0.0220 0.0273
MGCN(MM’23) 0.0620 0.0964 0.0339 0.0427 0.0729 0.1106 0.0397 0.0496 0.0439 0.0643 0.0245 0.0298
DRAGON(ECAI’23) 0.0662 0.1021 0.0345 0.0435 0.0752 0.1139 0.0413 0.0512 0.0450 0.0678 0.025 0.0309
LGMRec(AAAI’24) 0.0644 0.1002 0.0349 0.0440 0.0720 0.1068 0.0390 0.0480 0.0440 0.0665 0.0244 0.0303
SOIL(MM’24) 0.0680 0.1028 0.0365 0.0454 0.0786 0.1155 0.0435 0.0530 0.0492 0.0718 0.0279 0.0337
GUME(CIKM’24) 0.0673 0.1042 0.0365 0.0460 0.0778 0.1165 0.0427 0.0527 0.0458 0.0680 0.0253 0.0310
AlignRec(CIKM’24) 0.0674 0.1046 0.0363 0.0458 0.0758 0.1160 0.0414 0.0517 0.0472 0.0700 0.0262 0.0321
SMORE(WSDM’25) 0.0680 0.1035 0.0365 0.0457 0.0762 0.1142 0.0408 0.0506 0.0437 0.0650 0.0244 0.0299
MENTOR(AAAI’25) 0.0678 0.1048 0.0362 0.0450 0.0763 0.1139 0.0409 0.0511 0.0439 0.0655 0.0244 0.0300

TAMER 0.0722 0.1123 0.0395 0.0498 0.0867 0.1272 0.0481 0.0585 0.0553 0.0808 0.0313 0.0379
improv. 6.17% 7.15% 8.21% 8.26% 10.30% 9.18% 10.57% 10.37% 12.39% 12.53% 12.18% 12.46%

Table 2: Statistical overview of the datasets.

Dataset Users Items Interactions Sparsity

Baby 19445 7050 160792 99.88%
Sports 35598 18357 296337 99.95%
Electronics 192403 63001 1689188 99.98%

4 Experiment
We perform extensive empirical studies on three public datasets in
order to investigate the following Research Questions (RQ):
• RQ1: How does the proposed method recommendation per-
formance compared to existing SOTA approaches?
• RQ2: How does each module impact performance?
• RQ3: How do hyper-parameters affect performance?
• RQ4: How does the proposed method compare to others in
expanding user interests and reducing noise?
• RQ5: Why does using MACP and Interest Tree lead to better
recommendation performance?

4.1 Experimental Settings
Our method is evaluated through extensive testing on three well-
known datasets from Amazon reviews datasets [15]. The selected
categories are: (a) Baby, (b) Sports and Outdoors (denoted as Sports),

and (c) Electronics. Each of these datasets contains item-related
visual images and textual descriptions. We employ pre-extracted
features: 4,096-dimensional features for visual data, and textual
features are extracted using a pre-trained sentence-transformers
[17]. In our study, all items and users are filtered using a 5-core
setting. The statistics of the datasets are summarized in Table 2.

4.1.1 Baselines. To evaluate the effectiveness of our proposed
model, we compare it with two categories of baseline models: Gen-
eral Models, which rely solely on interaction data, and Multimedia
Models, which leverage multi-modal features.

GeneralModels: Matrix factorizationmodel BPR [18] and graph-
based model LightGCN [6], LayerGCN [42].

Multi-modalModels: Several STOAmethod have been selected
for comparison, including VBPR [5], MMGCN [29], DualGNN [25],
GRCN [28], LATTICE [37], SLMRec [21], BM3 [45], MICRO [38],
FREEDOM [44], MGCN [35], DRAGON [40], LGMRec [4], SOIL
[19], GUME [11], AlignRec [12], SMORE [16], MENTOR [31].

4.1.2 Evaluation Metrics. To ensure fair and consistent compar-
isons, we adopt the evaluation setup used in prior work [19], ran-
domly partitioning each user’s interaction history into training,
validation, and test sets in an 8:1:1 ratio. The optimal model is
chosen according to the highest Recall@20 achieved on the valida-
tion set. The average performance across all users in the test set is
evaluated using Recall@10, Recall@20, NDCG@10, and NDCG@20.
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Figure 3: Results of the ablation study.

4.1.3 Implementation Details. We implement our proposedmethod
based on the MMRec [41] framework. To ensure a fair comparison,
we adopt the optimal hyperparameter configurations as reported in
the original baseline studies. For general settings, we use the Adam
[2] optimizer to optimize all methods and initialized embedding
vectors of size 64 using Xavier [3] initialization. The number of
GCN layers L is set to 2 for user-item graphs and 1 for item-item
graphs. The 𝑘 for top-𝑘 is set to 10. Training is conducted on a
single NVIDIA RTX 4090 GPU. The hyper-parameter learning rate
and regularization weight are chosen from {1e-1, 1e-2, 1e-3, 1e-4,
1e-5}. The values of 𝛾 and 𝜏 are selected from {0.1, 0.2, 0.3} and {0.6,
0.7, 0.8}, respectively.

4.2 Experiment Result
4.2.1 Overall Performance (RQ1). To evaluate the effectiveness of
our proposedmethod, we perform comparative experiments against
multiple traditional and multimodal models on three widely used
real-world datasets. The experimental results are reported in Table
1, where our method outperforms all previous models across all
evaluation metrics, achieving SOTA performance.

Among all results, our method surpasses previous SOTA multi-
modal models by relative performance gains of 7.44%, 10.10%, and
12.39% (mean 9.98%) on the Baby, Sports, and Electronics datasets,
respectively. These results strongly validate the effectiveness of our
approach.

Among all comparison methods, MENTOR and TAMER share
a similar fundamental network structure. However, SOIL demon-
strates superior performance over MENTOR, as the ability to per-
ceive user interest information effectively expands the range of
potentially relevant items, thereby yielding improved recommen-
dation results. Our method surpasses MENTOR by 8.35%, 14.34%,
and 25.98%, and improves over SOIL by 8.33%, 10.34%, and 12.39%
on three datasets. This shows our approach effectively enhances
modality features with higher-order user interests and reduces
noise, significantly boosting performance.

4.2.2 Ablation Study (RQ2). To investigate the contributions of
individual components in our framework, we conduct ablation ex-
periments on three datasets. The experimental results are illustrated
in Figure 3. We design the following model variants:

• TAMER (base): Both the modality graph enhanced by the
Interest Tree and the MACP module are removed.
• TAMER (w/o IT): The modality graph enhanced by the In-
terest Tree is removed, retaining only the MACP module.

1e-1 1e-2 1e-3 1e-4 1e-5
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

R
eg

ul
ar

iz
at

io
n 

W
ei

gh
t

0.0871 0.0977 0.1083 0.1096 0.1053

0.0815 0.1013 0.1049 0.1098 0.1086

0.0813 0.0968 0.1042 0.1123 0.1081

0.0830 0.0960 0.1027 0.1088 0.1101

0.0815 0.0961 0.1059 0.1098 0.1081

R@20

1e-1 1e-2 1e-3 1e-4 1e-5
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

R
eg

ul
ar

iz
at

io
n 

W
ei

gh
t

0.0396 0.0449 0.0482 0.0494 0.0467

0.0382 0.0458 0.0476 0.0490 0.0488

0.0372 0.0436 0.0473 0.0498 0.0485

0.0374 0.0433 0.0469 0.0490 0.0490

0.0367 0.0432 0.0480 0.0494 0.0485

N@20

(a) Baby

1e-1 1e-2 1e-3 1e-4 1e-5
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

R
eg

ul
ar

iz
at

io
n 

W
ei

gh
t

0.0960 0.1129 0.1250 0.1272 0.1220

0.0850 0.1061 0.1184 0.1253 0.1237

0.0865 0.1044 0.1193 0.1255 0.1235

0.0866 0.1011 0.1176 0.1258 0.1254

0.0845 0.1029 0.1177 0.1257 0.1239

R@20

1e-1 1e-2 1e-3 1e-4 1e-5
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

R
eg

ul
ar

iz
at

io
n 

W
ei

gh
t

0.0439 0.0520 0.0581 0.0585 0.0558

0.0400 0.0496 0.0548 0.0582 0.0564

0.0400 0.0480 0.0547 0.0583 0.0564

0.0401 0.0466 0.0548 0.0584 0.0576

0.0396 0.0473 0.0544 0.0585 0.0570

N@20

(b) Sports

1e-1 1e-2 1e-3 1e-4 1e-5
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

R
eg

ul
ar

iz
at

io
n 

W
ei

gh
t

0.0513 0.0725 0.0794 0.0808 0.0782

0.0394 0.0635 0.0706 0.0773 0.0786

0.0385 0.0586 0.0704 0.0777 0.0788

0.0394 0.0558 0.0695 0.0769 0.0785

0.0379 0.0562 0.0691 0.0766 0.0790

R@20

1e-1 1e-2 1e-3 1e-4 1e-5
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

R
eg

ul
ar

iz
at

io
n 

W
ei

gh
t

0.0243 0.0340 0.0374 0.0379 0.0365

0.0186 0.0298 0.0333 0.0368 0.0370

0.0183 0.0277 0.0331 0.0367 0.0371

0.0187 0.0263 0.0327 0.0366 0.0369

0.0177 0.0265 0.0327 0.0362 0.0371

N@20

(c) Electronics

Figure 4: The performance impact of learning rate and regu-
larization weight (darker hues denote better performance).

• TAMER (w/o MACP): The MACP module is removed, retain-
ing only the Interest Tree-enhanced modality graph.
• TAMER: The full model with all components included.

Experimental results show that the removal of any single compo-
nent from TAMER leads to a performance drop, indicating that each
component plays a vital role in enhancing the model’s recommen-
dation effectiveness.

4.2.3 Effect of Learning Rate and Regularization Weight (RQ3). We
set the search range for TAMER’s learning rate and regularization
weight to {1e-1, 1e-2, 1e-3, 1e-4, 1e-5}, and the experimental results
on the three datasets are presented in Figure 4. For the Baby, Sports,
and Electronics datasets, the optimal learning rate and regulariza-
tion weight are found to be (1e-4, 1e-3), (1e-4, 1e-1) and (1e-4, 1e-1),
respectively. These results indicate that, across most datasets, the
optimal learning rate is 1e-4, while the choice of regularization
weight depends on the learning rate. Specifically, as the learning
rate decreases, reducing the regularization weight tends to yield
better performance.

4.2.4 Effect of 𝛾 and 𝜏 (RQ3). The hyperparameters 𝛾 and 𝜏 jointly
control the enhancement coefficient of the Interest Tree. Exces-
sively large values of 𝛾 and 𝜏 may lead to gradient explosion, while
overly small values may weaken the enhancement effect of the
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Figure 5: The performance impact of 𝛾 and 𝜏 .

Interest Tree. To balance these effects, we set the search range for 𝛾
to {0.1, 0.2, 0.3} and for 𝜏 to {0.6, 0.7, 0.8}, and conducted hyperpa-
rameter tuning. As shown in Figure 5. The results across the three
datasets suggest that the optimal values for 𝛾 and 𝜏 are 0.3 and
0.7 for the Baby and Electronics datasets, whereas for the Sports
dataset, the best performance is achieved when 𝛾 = 0.2 and 𝜏 = 0.8.

4.2.5 Performance Comparison with Integrated Methods (RQ4). As
previously discussed, while SOIL is capable of perceiving user in-
terest preferences, the shared candidate item sets from different
modality graphs can lead to the incorrect linking of items with
similar visual features but completely different usages, resulting
in noise. DA-MRS addresses this issue through a denoising ap-
proach. A straightforward solution to this problem is to combine
the two models. To evaluate this, we conduct a set of compara-
tive experiments. As shown in Table 3, we create several variants,
where TAMER (base) serves as the baseline model from the ablation
experiments, and * indicates a model component rather than the
full model. SOIL* refers to the interest-aware graph component in
SOIL that extends user interests, while DA-MRS* represents the
denoising item-item graph component from DA-MRS. We conduct
experiments by adding SOIL*, DA-MRS*, and both SOIL* and DA-
MRS* to the baseline model.

The experimental results on the Baby and Sports datasets indicate
that both SOIL* and DA-MRS* effectively enhance recommendation
performance, suggesting the importance of perceiving user inter-
ests and the presence of noise connections in the interest modality
graph. After combining the two methods, the performance of the
model is further improved, but TAMER still demonstrates stronger
overall performance. This highlights the effectiveness of our pro-
posed approach, which not only mines users’ higher-order interests
through the user interest graph but also effectively avoids noisy
connections.

4.2.6 Visualization Analysis (RQ5). We randomly select 1,000 data
points from E𝑡_𝑓 𝑒𝑎𝑡𝑟𝑎𝑤 , E𝑧_𝑓 𝑒𝑎𝑡 , and E𝑝_𝑓 𝑒𝑎𝑡 in the Baby dataset and
project their representations into a 2D space using t-SNE [23]. We
then visualize the 2D feature distribution using Gaussian Kernel
Density Estimation (KDE) [22], as shown in Figure 6. The original
modality representations on the leftmost side exhibit multiple un-
even unimodal patterns, which reduce item distinguishability and

Table 3: Comparison experiment between TAMER and
TAMER(base)+SOIL*+DA-MRS*.

Dataset Baby Sports

Metrics R@20 N@20 R@20 N@20

TAMER(base) 0.1019 0.0447 0.1179 0.0526
+SOIL* 0.1027 0.0461 0.1187 0.0531
+DA-MRS* 0.1044 0.0468 0.1186 0.0539
+SOIL*+DA-MRS* 0.1051 0.0472 0.1217 0.0545

TAMER 0.1123 0.0498 0.1272 0.0585
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Figure 6: The distribution of representations in textmodality.

Figure 7: Visualizing embeddings during the training process.

consequently degrade recommendation preferences [35]. MACP en-
hances the uniformity of text representations, thereby influencing
recommendation performance [24].

Furthermore, we visualize the embedding trajectory of a spe-
cific item during training, as shown in Figure 7. User nodes are
depicted in Soft Salmon and item nodes in Lake Blue. The trajectory
illustrates the evolution direction of the item’s embedding during
training. The pentagram denotes the target users who interacted
with this item in the test set. The left side shows the case without
Interest Tree, while the right side includes Interest Tree. It can be
observed that with Interest Tree, the item embedding effectively
perceives the preferences learned by users, guiding its learning
direction toward user embeddings and thereby facilitating more
effective recommendations.

5 Conclusion
This work proposes TAMER, an Interest Tree Augmented Modality
Graph Recommender for multimodal recommendation. It captures
higher-order user interests in homogeneous graphs while reduc-
ing noise. An Interest Tree expands potential user interests, and a
MACP module refines modality feature distribution. Experiments
on real-world datasets show that TAMER significantly outperforms
SOTA methods.
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